First Total Synthesis of (\pm)-Aiphanol

Xiao Long WANG, Jian Peng FENG, Xin Gang XIE, Xiao Ping CAO*, Xin Fu PAN*
Department of Chemistry \& State Key Laboratory of Applied Organic Chemistry, Lanzhou
University, Lanzhou 730000

Abstract

Aiphanol was first synthesized in which coupling reaction and Horner-Wittig reaction as the key steps.

Keywords: Aiphanol, stilbenolignan, coupling reaction.

Aiphanol was isolated from the seeds of Aiphanes aculeate Willd. (Arecaceae) collected in Peru and was reported to exhibit significant inhibitory activities against cyclooxyge-nases-1 and -2. The structure of aiphanol was elucidated by spectroscopic methods as an unprecedented stilbenolignan skeleton in which a stilbene moiety is linked to a phenylpropane unit through a dioxane bridge ${ }^{1}$.

In our previous works the synthetic approach to 1,4-benzodioxane lignans were achieved ${ }^{2}$. Since aiphanol represents the first example of stilbenolignan linked through a dioxane bridge ${ }^{1}$, it arose our interest in the synthesis of this natural product. Our synthetic strategy is to construct the substituted benzodioxane ring, followed by formation of stilbene moiety by Horner-Wittig reaction.

As shown in Scheme 1, treatment of aldehyde $\mathbf{1}$ with monoethyl malonate ${ }^{3}$ gave ester 2 that was reduced to afford the corresponding unsaturated alcohol 3. In the presence of $\mathrm{Ag}_{2} \mathrm{O}$ according to our previous procedure ${ }^{2 \mathrm{a}}, \mathbf{3}$ was coupled with ester $\mathbf{5}$, which was derived from aldehyde 4, to give 1,4-benzodioxane intermediate $\mathbf{6}^{4}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 revealed a doublet signal of $\mathrm{H}-2$ at $\delta 4.95$ with a coupling constant $J=8.1 \mathrm{~Hz}$ which is typical of a benzylic methine substituted by an oxygen and trans orientation of the benzodioxane ring ${ }^{1,5}$. Additionally, a multiplet signal of H-3 at $\delta 4.05$ also implies the existence of 1,4-dioxane ring ${ }^{1}$. Selective protection of phenolic hydroxy group of $\mathbf{6}$ with chloromethoxymethane afforded methoxymethyl (MOM) ether 7 , which was oxidized by $\mathrm{NaIO}_{4} / \mathrm{OsO}_{4}$ (cat.) to give the key intermediate aldehyde $\mathbf{8}^{6}$. Although exclusively preparation of trans-stilbene by the Horner-Wittig reaction has been reported in the literature ${ }^{7}$, treatment of $\mathbf{8}$ with phosphonate $\mathbf{9}$, a mixture of $\mathbf{1 0}\left[(E)\right.$ and $(Z), c a .4: 1$ by ${ }^{1} \mathrm{H}$ NMR] was obtained and could not be separated by column chromatography. The mixture could be converted to (E)-isomer $\mathbf{1 0}$ in high yield by treatment with thiophenol in ref-

[^0]Scheme 1

i) $\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, pyridine, piperidine(cat.), reflux, $6 \mathrm{~h}, 94 \%$; ii) $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}(3: 1)$, THF, 0.5 h , 87%; iii) $\mathrm{Ag}_{2} \mathrm{O}$, benzene-acetone ($2: 1$), reflux, $8 \mathrm{~h}, 52 \%$; iv) MOMCl, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $4 \mathrm{~h}, 93 \%$; v) $\mathrm{NaIO}_{4}, \mathrm{OsO}_{4}$ (cat.), dioxane- $\mathrm{H}_{2} \mathrm{O}(1: 1), 92 \%$; vi) (a) NaH , THF, 90%; (b) PhSH , AIBN, benzene, reflux, $8 \mathrm{~h}, 93 \%$; vii) $3 \mathrm{~N} \mathrm{HCl}-\mathrm{MeOH}(1: 1), 40-50^{\circ} \mathrm{C}, 90 \%$.
luxing benzene in the presence of azoisobutyronitrile (AIBN) ${ }^{8}$. Final deprotection of $\mathbf{1 0}$ with diluted HCl in methanol at $40-50{ }^{\circ} \mathrm{C}$ afforded the stilbenolignan (\pm)-aiphanol $\mathbf{1 1}^{9}$, of which the spectral data (IR, NMR and MS) were identical with the literature report ${ }^{1}$.

In summary, we have presented a concise approach of preparation of (\pm)-aiphanol 11. The synthetic routes are facile and the yields are satisfactory. Biological evaluation and asymetric synthesis of aiphanol are in progress.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (NNSFC, QT program, No. 20021001) and Natural Science Foundation of Gansu province (ZS011-A25-003-Z)

References and Notes

1. D. H. Lee, M. Cuendet, J. S. Vigo, et al., Org. Lett., 2001, 3(14), 2169.
2. (a) X. G. She, W. X. Gu, T. X. Wu, X. F. Pan, Synth. Commun., 1999, 29(15), 2625. (b) X. G. She, X. B. Jing, X. F. Pan, A. S. C. Chan, T. K. Yang, Tetrahedron Lett., 1999, 40, 4567.
3. R. E. Strube, Org. Synth., 1957, 37, 34.
4. Intermediate 6: a yellow solid, mp $180-181^{\circ} \mathrm{C}$; IR $v(\mathrm{KBr}), \mathrm{cm}^{-1}: 3391,2936,1508,1270$, $1115,858,810 ;{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}\right): 1.33(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=12.3$, $3.6 \mathrm{~Hz}), 3.84(\mathrm{dd}, 1 \mathrm{H}, J=12.3,2.1 \mathrm{~Hz}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.95$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}$, $J=8.1,1.8 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}\right)$: $14.3,56.3,60.4,61.5,76.4,78.5,104.0,116.6,117.3,122.2,126.7,128.3,135.4,143.8,144.0$, $145.2,147.3,167.2 ; \operatorname{EI-MS}(m / z, \%): 416\left(\mathrm{M}^{+}, 75\right), 219(20), 210(73), 167$ (96), 91 (52), 43 (100).
5. (a) S. M. C. Dias, J. B. Fernandes, J. G. S. Maia, et al., Phytochemistry, 1986, 25(1), 213. (b) T. Ganesh, K. K. Sharma, G. L. D. Krupadanam, Bull. Chem. Soc. Jan., 2001, 74, 2397.
6. Intermediate 8: Colorless oil; IR $\vee(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3402,2918,1594,1281,1124,875,826$; ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}\right): 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, 1 \mathrm{H}, J=12.3,3.3 \mathrm{~Hz}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.88$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.3,2.4 \mathrm{~Hz}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 7.10$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 9.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, δ_{ppm}): 56.1, 57.1, 61.7, 76.2, 78.8, 98.1, 104.3, 117.5, 118.5, 124.2, 130.7, 131.4, 135.1, 144.0, $148.8,153.7,190.7$; $\operatorname{EI-MS}(m / z, \%): 390\left(\mathrm{M}^{+}, 15\right), 209(13), 181(5), 149$ (32), 45(100).
7. M. Cushman, D. N. D. Gopal, A. K. Chakraborti, C. M. Lin, E. Hamel, J. Med. Chem., 1991, 34, 2579.
8. R. Annunziata, M. Cinquini, F. Cozzi, et al., J. Org. Chem., 1987, 52, 4674.
9. (\pm)-Aiphanol 11: amorphous powder; IR $v(\mathrm{KBr}), \mathrm{cm}^{-1}: 3356,2922,1583,1497,1266,1104$, 827,$740 ;{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}, \delta_{\mathrm{ppm}}\right): 3.52(\mathrm{dd}, 1 \mathrm{H}, J=12.3,4.2 \mathrm{~Hz}), 3.74$ (dd, 1 H , $J=12.3,2.4 \mathrm{~Hz}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.27(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.55$ $(\mathrm{d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 7.01(\mathrm{~d}, 1 \mathrm{H}$, $J=16.5 \mathrm{~Hz}), 7.08(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.8 \mathrm{~Hz}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}\right.$, acetone $-\mathrm{d}_{6}$, $\delta_{\text {ppm }}$): 56.7, 61.7, 77.4, 79.6, 102.7, 105.6, 106.1, 115.3, 117.7, 120.8, 128.1(overlapping), $128.6,131.8,137.2,140.5,144.4,145.0,148.7,159.5 ; \operatorname{EI}-\mathrm{MS}(m / z, \%): 452\left(\mathrm{M}^{+}, 1\right), 299$ (1), 223 (3), 210 (6), 149 (44), 109 (5), 43(100).

Received 18 August, 2003

[^0]: *E-mail: caoxplzu@163.com ; panxf@lzu.edu.cn

